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Development of a New Model for Plane Strain 
Bending and Springback Analysis 

Z.T. Zhang and D. Lee 

A new mathematical model is presented for plane strain bending and springback analysis in sheet metal 
forming. This model combines effects associated with bending and stretching, considers stress and strain 
distributions and different thickness variations in the thickness direction, and takes force equilibrium 
into account. An elastic-plastic material model and Hill's nonquadratic yield function are incorporated 
in the model. The model is used to obtain force, bending moment, and springbaek curvature. A typical 
two-dimensional draw bending part is divided into five regions along the strip, and the forces and mo- 
ments acting on each region and the deformation history of each region are examined. Three different 
methods are applied to the two-dimensional draw bending problems: the first using the new model, the 
second using the new model but also including a kinematic directional hardening material model to con- 
sider the bending and unbending deformation in the wall, and the third using membrane theory plus 
bending strain. Resultsfrom these methods, including those from the recent benchmark program, are 
compared. 

Keywords I 

bending, springback, sheet forming, mathematical modeling 

1. Introduction 

DIFFERENT approaches are used in the analysis of sheet metal 
stretch forming depending on if the bending effect is consid- 
ered, whereas pure bending is often analyzed without consider- 
ing stretching and force equilibrium. Finite element analysis 
using solid type elements (Ref 1-3) can take bending effect into 
account. However, the computing time is usually long, and 
convergence is often a problem. Finite element analysis using 
the shell theory (Ref 4-6) takes bending effect into account by 
adding a correcting term to the strain before the equilibrium 
equations are solved. This single correcting term may not be ac- 
curate because the thickness of the convex side usually be- 
comes thinner due to tensile strain, and the thickness of the 
concave side becomes thicker due to compressive strain. Finite 
element analysis using membrane theory (Ref 7, 8) calculates 
membrane strain and bending strain separately and then com- 
bines these data. This method may not be accurate either be- 
cause the effect due to bending strain is not taken into account 
in the equilibrium equations, and the thickness variation in the 
stretching and compressing areas is not considered. 

The semianalytical method presented by Brunet (Ref 9) ex- 
amines the details of material models, but the thickness vari- 
ation is not considered. Other analytical or semianalytical 
methods (Ref 10-14) often provide a faster estimation of strain 
distribution and other parameters, but the thickness variation 
calculation in these methods is either inaccurate or completely 
neglected. 
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Springback in sheet metal forming always adversely affects 
its final shape. It is necessary to either reduce the amount of 
springback by appropriate processing or to compensate for the 
expected springback by using a different design procedure. In 
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Fig. 1 Plane bending: (a) Cross sections before and after defor- 
mation; (b) Stresses and strains in plane strain bending (e 2 = 0 
and 0 3 = 0). 

order to achieve either of  these objectives, one must be able to 
predict accurately the magnitude of  springback for a given 
loading method and component. The calculation of springback 
is based on the theorem that the distortion, or springback, 
caused by the unloading of  a force or moment is equal to the de- 
formation caused by the loading of  a force or moment of the 
same magnitude but opposite direction. Therefore, the accu- 
racy of  the springback calculation depends on the accuracy of 
the force or moment calculation, as well as the accuracy of  the 
moment of  inertia calculation. 

Based on these considerations, a new model is presented in 
which stretching, bending, force equilibrium, and thickness 
variation are incorporated at the same time. The calculation of  
strain, stress, force, bending moment, and moment of inertia 
are all based on the deformed geometry, and the error due to in- 
accurate geometry description is therefore eliminated. 

Three methods are outlined to analyze the two-dimensional 
draw bending problems. Method 1 uses the new model pre- 
sented in section 2. Method 2 not only uses the new model, but 
also adopts a kinematic directional hardening material model to 
reflect the bending and unbending deformation in the wall re- 
gion. Method 3 uses membrane theory to account for force 
equilibrium, then bending strain is added to the total strain, as 
described by N i e e t  al. (Ref 14). A comparison of  the results 
from different methods is also presented. 

area was further divided into a tensile stress and strain area and 
an area of  tensile stress but of  total compression strain. In this 
paper, the cross section is not divided into separated areas. 
Stress calculation is based on the true strain involved in each fi- 
ber across the thickness. 

Consider the plane strain bending and stretching deforma- 
tion shown in Fig. l(a). A flat sheet of  thickness, t o, and length, 
Lo, is deformed to a curved sheet with inner radius of R i and 
outer radius of  R o. The radius of  the original middle surface is 
Rmo. Assume that the plane cross sections remain plane and per- 
pendicular to the deformed middle surface and the volume re- 
mains unchanged after plastic deformation whereas the volume 
variation due to elastic deformation is neglected. Given this, 
the cross-sectional area will also remain unchanged because of  
plane strain deformation. Under these assumptions, the area be- 
neath an arbitrary location, Zo, before and after deformation is 
related by the following equation: 

~t (R 2 _ R/2) (Eql )  LoZ o = "~ 

The tangential strain of the fiber at arbitrary location z o, which 
is at radius R after deformation, is: 

~ R  
e 1 = In -7-- (Eq 2) 

% 

or: 

Lo e 
(x -- -~- e i (Eq 3) 

Substitute Eq 3 into Eq 1: 

es 
Zo = - ~  ~R 2 - R~) (Eq 4) 

R can be solved from Eq 4: 

R - z~ + ~/z2~ + Ri2 e2e' 
(Eq 5) 

eej 

t 
�9 . ~ o 

For the ongmal  middle surface, z o = ~- and e I = Elmo,  the corre- 
sponding radius is: 

2. A New Model to + ~/t2o + 4Ri 2 e2e~mo 
Rmo - (Eq 6) 

2ee~o 
2.1 Bending and  Stretching Strain Calculation 

In the analysis of  sheet metal bending, the cross section of 
the bending sheet is often divided into different deformation ar- 
eas. The most detailed analyses may be those given by Dadras 
et al. and Verguts et al. (Ref 12, 15) where the cross section was 
divided into three areas: stretching, compressing, and strain re- 
versal areas. In the Dadras analysis (Ref 12), the strain reversal 

The tangential strain of  the fiber of  the original middle 

surface is: 

t~Rmo 
s = In L - ~  (Eq 7) 
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It is possible to express the tangential strain at arbitrary radius 
R as the function of the radius and tangential strain of  the origi- 
nal middle surface according to Eq 2 and 7: 

e 1 = In R _ ~  e~.t~ ~ ( E q  8 )  
Rmo 

From Eq 8, 

e = Rmo eel e--%,o (Eq 9) 

Substituting Eq 9 into Eq 5: 

z o + ~Z2o + Ri2 e2el 
RmoeEl e--elmo- (Eq 10) 

eet 

Strain E 1 can be solved from Eq 10: 

1 R 2 e2~mo + 2Z o Rmo e%,o 
e I = ~ -  In R2mo (Eq 11) 

Substituting Eq 6 into Eq 11, the tangential strain can be ex- 
pressed as the function of the original location Zo, the tangential 
strain of  the original middle surface, and the corner radius of 
the punch or die: 

1 to + ~ + 4R2 e2elm~ eelmo 
e 1 (Zo,elmo,Ri)= "~ 

2eelmo 

In R 2 e2elmo + 2z o 

2 

"t~ + ~ ~2eelm~ 4R2 e2elm~ 1 

(Eq12) 

2 . 2  Constitutive Relations 

Under the general three-dimensional stress state, suppose 
the materials stress-strain relation takes the form: 

_ r ]E~ in elastic regions 
ts = ~K(eo + ~)n in plastic regions (Eq 13) 

For plane strain and plane stress in bending as shown in Fig. 
1 (b), using Hill 's nonquadratic yield function (Ref 16) for nor- 
mal anisotropic materials, the relationship between e 1 and ts 1 
can be found: 

G 1 = Kdl(E o + dllEll) n (Eq 14) 

in plastic regions, where 

m-I 
1 1 

d 1 = ~ [2(1 + r)]~ [ l+2r)-lm-1] -'m'- 

It can be shown that: 

E 
G 1 = ~ E 1 1- v 2 

(Eq 15) 

D m  
If a stress-strain (o-E) curve is obtained from an experiment, 

it can be transformed into a Ol-e 1 curve by following equations 
for plastic regions: 

{ (~1 = ~d 1 

E1 = -E /d 1 
(Eq 16) 

The following equations can also be obtained for elastic re- 
gions: 

1 - 

1-V 2 
E 1 = - - - -~  G 1 

(Eq 17) 

2.3 Calculation o f  Force, Bend ing  Moment ,  and  
M o m e n t  o f  lnert ia 

The resulting force from the stress of  a unit width cross sec- 
tion is obtained by the following equation: 

o 

F = o 1 [g I (Zo,Elmo,Ri)] dR(Zo) 
R i 

(Eq 18) 

A starting value of the original middle surface strain.~lrao is in- 
itially determined, e 1 is then calculated from Eq 12 for a spe- 
cific layer of  fiber with coordinate z o in the sheet. The radius of  
this particular fiber is calculated from Eq 5. Equation 14 or 15 
is used to find the corresponding stress depending on the defor- 
mation involved--plastic or elastic. I f  the stress-strain relation 
is given by experimental data, they are first transformed by Eq 
16 and 17. 

The calculated resulting force from Eq 18 is compared with 
the transferred force through the cross section. If  the difference 
between the two is greater than an allowed value, the original 
middle surface strain is adjusted, and the above calculation pro- 
cedure is repeated. This iterative process is continued until a 
satisfactory result is obtained. 

The bending moment is calculated by: 

o 

M = tr 1 (e l) [R - (R o + Ri)/2.0]dR(zo) (Eq 19) 
R i 

The moment  of inertia is calculated by: 

L = (Ro-Ri)3/12 (Eq 20) 
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Note that the force, the bending moment, and the moment of  
inertia are all calculated based on the geometry after deforma- 
tion. 

2.4 Spr ingback  Calcula t ion  

Springback refers to the change in the shape of  the sheet ge- 
ometry after the load has been removed. The stretching force in 
the sheet causes sheet shrinkage, and the bending moment 
causes rotation. In sheet metal forming, the shape variation 
caused by the bending moment is generally much larger than 
that caused by the stretching force, and therefore the latter is 
often neglected. Springback is caused by an elastic deforma- 
tion, and the unloading process is normally considered as a re- 
verse loading of  the same magnitude of  the loading force or 
bending moment, or both. Under plane strain deformation, the 
springback curvature caused by unloading of a bending mo- 
ment is calculated by the following formula: 

AK = M t l  ] ...,, --V2., (Eq 21) 
LE 

The main difference of  springback prediction lies in the dif- 
ferent methods of  calculating the bending moment, M. Vari- 
ation of  Young's modulus, E, with plastic strain has been 
considered according to Brunet (Ref 9), but published papers 
about this variation are limited. 

2.5  Thickness Variat ion a n d  Pure Bending 

Most previous methods in bending analysis neglect the 
change of  sheet thickness during deformation. Hill showed that 
a rigid plastic sheet cannot thin by bending alone unless tensile 
forces are accompanied (Ref 17). Such thickness variation after 
bending and its effect on the prediction of  springback and other 
parameters are examined in this section. 

Referring to Fig. 1 (a), for pure bending, the original middle 
surface strain Elm o i s  zero. 

t 2Rmo 

to "~ltoRmo+R2o + ~R2o-toRmo 
(Eq 22) 

or 

where 

z =  213 
to ~ + ~  ( E q 2 3 )  

[~= gnlo 
to 

Although the change is very small, the thickness does 
change. For example, ]3 = 3.0, t/t o is 1.015. 

Now consider the thickness difference between the tensile 
area and the compression area. 

Ro-Rmo = "~/toRmo + R2o - Rmo (Eq 24) 

Rmo-R i = g m o  - ~lR2mo-toRmo (Eq 25) 

The thickness difference of  these two areas is obtained from Eq 
24 and 25: 

At = 2Rmo - R i - R o 

= 2Rmo - ~f-[R2o-toRmo - "~-toRmo+R2 o (Eq 26) 

or: 

At = 2~ - ~ -  ~ (Eq 27) 
to 

For example, 1~=3, At/t o = 0.086, or A i f( t  o / 2  ) = 0.172. For 
pure bending when strain elm o in the original middle surface is 
zero, the stretched area is about 17.2% smaller than the com- 
pressed area in this situation, which may have a significant ef- 
fect on the bending moment calculation. The stress resultant in 
the cross section is not zero and has a negative value. There- 
fore, an outside compressive force in the strip direction is re- 
quired in order to reach pure bending. On the other hand, if pure 
bending is defined as when the stress resultant in the cross sec- 
tion is zero, the strain elm o of  the original middle surface fiber 
will be positive, not zero. The thickness difference between the 
stretched area and the compressed area also shows that using a 
single thickness variation coefficient for both these two areas is 
inaccurate; however, this method has often been adopted by 
others. 

In calculating the bending moment, the reference point 
should be at the current middle surface when the stress resultant 
in the cross section is not zero. If  stretching is involved in a 
bending deformation, thickness will be reduced in the same de- 
gree as the sheet elongation. So thickness variation should be 
taken into account in the calculation of moment of  inertia. For 
example, if the thickness is reduced by 10%, the moment of  in- 
ertia of  the cross section will be reduced by 27%. 

3. Analysis of Two-Dimensional Draw Bending 
Processes 

The bending and stretching analysis in the last section is 
very general. It can be used for pure bending or for deformation 
where both bending and stretching (or compression) are in- 
volved. The two-dimensional draw bending problems as illus- 
trated in Fig. 2(a) are considered. Although the equilibrium 
formulation are the same as that given by Wenner (Ref 18), a 
more detailed description of  the process is provided, and some 
important phenomena are explained. The deformation area is 
divided into five regions along the strip direction as shown in 
Fig. 2(a). The forces and bending moments acting at the end of  
each region are shown in Fig. 2(b to h) except the forces normal 
to the sheet surfaces. 
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Fig. 2 (a) Deformation regions in two-dimensional draw bend- 
ing processes. (b-h) Force and moment illustrations in different 
regions 

3.1 Region I 

This region is the flat part under the punch. Under the action 
of  both stretching force and bending moment, the sheet will not 
contact the punch and should have a curvature as shown in Fig. 
2(b), especially at the beginning of  the forming process. This 
region is usually considered flat, as in membrane theory. 

3.2 Region H 

This region is the area around the punch corner and is shown 
in Fig. 2(c). The left area of  this region is bent first and followed 
by subsequent stretching, whereas the right area is stretched 
first and followed by subsequent bending. Strictly speaking, 
the analysis of the left area and that of the right area of  this re- 
gion should be different, and the final curvature of  this region 
after unloading will not be exactly the same. However, simpli- 
fied solutions are often adopted. 

3.3 Region I I I  

This region is the unsupported area and may have under- 
gone the most complex deformation in the process. In the early 
stage of  the process, the sheet under the blank cannot move be- 
cause of  friction. The forces and moments acting on this region 
are shown in Fig. 2(d). Large shear stresses, which are normal 
to the surface and now shown, will exist at both ends of  this re- 
gion to balance the moments of  the same direction (clockwise 

direction) acting on both ends. The bending moment in the 
cross section is positive at the lower left side and negative at the 
upper right side. At some point near the middle, it is zero. This 
is the condition of stretching. In the downward movement of 
the punch, part or all of this area may be bent around the punch 
corner, depending on the magnitude of  the punch corner radius, 
the gap between the punch and the die, and the die corner ra- 
dius. 

If  the stretching force in this region can overcome the frac- 
tion force from the die comer and under the blankholder or 
draw bead, the sheet will be drawn in and becomes part of this 
region. The forces and moments acting on this region under this 
situation are shown in Fig. 2(e). I f  there is no draw bead and the 
sheet under the blankholder only undergoes elastic deforma- 
tion, the sheet in this area will have the deformation history of 
bending around the die corner and unbending coming out of the 
die comer. If  the sheet under the blankholder undergoes plastic 
stretching, an additional stretching deformation history will 
have to be considered. 

3.4 Region IV 

This region is the area around the die corner. The forces act- 
ing on this region at the early stage, when there is no drawn-in 
and stretching deformation occurs, are shown in Fig. 2(f). With 
the flow of  the material under the blankholder, this initial area 
may become part of region III, and the forces and moments act- 
ing on subsequent material in this region are shown in Fig. 2(g). 
If  sticking occurs, then it will have the same force and moment 
diagram as shown in Fig. 2(f). 

3.5 Region V 

This is the region under the blankholder. The forces and mo- 
ments acing on this region are shown in Fig. 2(h). In drawing a 
symmetric cup, the friction force under the blankholdgr is usu- 
ally considered as acting on the edge of  the sheet bi~cause of  
thickening, In this two-dimensional draw bending problem, if 
the blankholder force is not large enough to produce thinning, 
the friction force will act on the entire region. Otherwise, the 
friction force varies along the strip and decreases inwardly. It 
may become zero at some point before reaching region IV be- 
cause the sheet becomes so thin that it loses contact with the 
blankholder. I f  there is no draw bead, the sheet in this region 
will remain straight after unloading. 

3.6 Sticking Problem 

Wenner has given an excellent description in this respect 
(Ref 18) where the friction in region V is assumed to act on the 
boundary, and the friction coefficient at the punch corner is as- 
sumed to be equal to that at the die corner. In that case, the force 
at the center and that at the boundary are equal, and sticking 
will occur simultaneously at both the punch corner and the die 
corner. Under sliding conditions, if the friction coefficient at 
the punch corner, p.p, is different from the friction coefficient at 
the die corner, ~ta, the force at the center, be, will be different 
from the force at the boundary, F b (refer to Fig. 2). 

F b = Fwe-OPd (Eq 28) 
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and 

F c = Fwe-Ortp (Eq 29) 

F w is the wall force in region III. 
Differentiating F b and F c with respect to 0, we obtain: 

d F  b dF  w 
- e-0~td - IXdFwe-01q (Eq 30) 

dO dO 

and 

dF c d t  w 

dO dO 
- -  e-0~tp - IXpFwe-~ (Eq 31) 

When F b or F c Reaches its maximum value, sticking begins 
to occur. This requires that: 

dF w 
= tt d (Eq 32) 

FwdO 

o r  

dF w 
FwdO = IXp (Eq 33) 

This is the critical condition. If  I~ d > .~j~, and sticking does occur 
in the process, it occurs first on the die surface. Whether stick- 
ing occurs on the punch surface will depend on if the condition 
in Eq 33 can be reached in subsequent deformation. If  sticking 

does not occur on the die surface, it will never occur on the 
punch surface. If  It d < ~tp, an opposite result can be obtained 
with an analysis similar to that shown above. 

3.7 T h r e e  A n a l y s i s  M e t h o d s  

In order to examine the new model presented previously, 
three methods are used in analyzing the two-dimensional draw 
bending problems. In all three methods, the stress resultant per 
unit width is calculated using Eq 18, and the applied force bal- 
ance along the strip direction is considered in the same way as 
suggested by Wenner (Ref 18). Region I and region V are as- 
sumed as flat both before and after unloading. Region Ill is as- 
sumed as flat before unloading and having curvature after 
unloading due to springback. 

Method 1 adopts the calculation procedure described in sec- 
tion 2 for both region II and region IV. The bending moment at 
the boundary between region III and region IV is considered to 
be equal to that of region III and is used to calculate the spring- 
back curvature of region III. 

Method 2 is the same as method 1 except that a kinematic di- 
rectional hardening material model, as shown in Fig. 3, is used 
to determine the strain, stress, force, and bending moment in re- 
gion HI. Unbending occurs when the sheet enters region HI 
from region IV where it undergoes bending as well as stretch- 
ing deformation. The whole region HI is assumed to have un- 
dergone the same deformation history, being straight before 
unloading and having a constant curvature after springback. 

Method 3 uses membrane theory to calculate the original 
middle surface strain, stress, and force for both region II and re- 
gion IV. Bending strain is added to the total strain afterwards as 
described by Nie (Ref 19). Bending and unbending are not con- 
sidered in this method. 

These three methods were implemented in a computer aided 
bending and springback analysis system. Sample cases were 
examined and are presented in the next section. 

4. Results 

The three methods described in the last section were applied 
to the two-dimensional draw bending problems examined in 
the NUMISHEET '93 International Conference (Ref 20). The 
punch width is 50 mm, and the die inner width is 52 mm. The 
punch corner radius and die corner radius are both 5 mm. The 
punch displacement is 70 mm, and the friction coefficient is 
0.162. The blankholder force used is 19.6 KN. The fraction 
force caused by the blankholder force is assumed to act at the 
boundary where Lb=85 mm. The material used is aluminum al- 
loy, and its parameters are: K=570.4 N/mm 2, n=0.3469, 
eo=0.01502, E=71 GPa, v=0.33, r=0.71, to=0.81 mm, 
Gy=137.0 N/mm 2, and m=2 for the Hill nonquadratic yield 
model (Ref 16). 

4.1 S t r a i n  D i s t r i b u t i o n  P r e d i c t i o n s  

The computed strain distributions along the strip direction 
are shown in Fig. 4. Method 1 predicts higher membrane strain 
(original middle surface strain) in region II and IV than in any 
other areas as shown in Fig. 4(a). This may help to explain why 
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Fig. 4 Strain distributions predicted by different analysis methods: (a) method 1, (b) method 2, (c) method 3, (d) deformation regions 

failure often occurs at the punch corner or the die corner if the 
higher surface strain on the convex side is not enough to ex- 
plain this phenomena because of  high strain gradient along the 
thickness direction. Method 2 predicts higher membrane strain 
in region III than in any other region, as high as the surface 
strain on the convex side around the corners, as shown in Fig. 
4(b). Method 3 predicts almost the same magnitude of  mem- 
brane strain for all areas as shown in Fig. 4(c). This may not be 
correct because higher membrane strain has been observed in 
region Ill than in regions I and V in experiments. 

As demonstrated in section 2, membrane strain exists in the 
original middle surface for zero stretching force, this is exam- 
ined in Fig. 5 with zero blankholder force, which results in zero 
stretching force. Methods 1 and 2 predict more than 0.3 % mem- 
brane strain in region II and in region IV. Method 2 predicts 
about 0.17% membrane strain in region III when bending and 
unbending deformation is considered. These strains are small. 
But when the ratio of  thickness to punch radius is increased, the 
membrane strain becomes larger. Method 3 predicts zero mem- 
brane strain for all regions. 
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4.2 Springback Predictions 

The springback parameters defined for the two-dimensional 
draw bending problems in NUMISHEET '93 (Ref 20) are cal- 
culated using these three methods and compared against the ex- 
perimental and simulation results presented in NUMISHEET 
'93 International Conference in Table 1 (Ref 20) where the re- 
sults from using blankholder force of 2.45 KN and 12.0 KN are 

also listed. 
Since springback is mainly caused by the bending moment, 

the bending moment distributions from different methods are 
shown in Fig. 6(a). In regions II and IV. methods 1 and 2 predict 
the same magnitude of  bending moment, whereas at region III, 
method 2 predicts a slightly higher bending moment than 
method 2. Method 3 predicts the highest bending moment for 
all three middle regions. 
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Fig. 5 Membrane strain distributions predicted by different 
methods under zero stretching force 

Springback curvature AK distributions are shown in Fig. 
6(b). Although the bending moments in region III predicted by 
methods 1 and 2 are almost the same, the springback curvature 
distributions predicted by them are quite different, because 
method 2 predicts a thinner thickness than method 1. The sign 
of the springback curvature is disregarded in the diagram. 

The springback parameters predicted by method 1 are more 
consistent with the NUMISHEET experimental averages. The 
shapes predicted by the three methods after unloading are com- 
pared with the shape before unloading in Fig. 6(c). Method 1 
gives the closest shape prediction to the NUMISHEET experi- 
mental averaged shape. 

The parameters listed in Table 1 show that when blank- 
holder force is small (2.45 KN), the differences between the 
springback predictions from these three methods are small. 
When the blankholder force is increased to 19.6 KN, their dif- 
ferences become larger, which are shown in Fig. 7. The vari- 
ation ranges of  the NUMISHEET experimental results are 
much smaller than those of the simulation results. 

5. Comments 

A new mathematical model  is presented for the calculation 
of  strain, stress, force, bending moment, and springback under 
a plane strain sheet metal bending and stretching condition. 
The new model couples bending and stretching together, con- 
siders different thickness variation along thickness direction, 
and takes force equilibrium into account. The model includes 
all of  the important tool geometry and material parameters in 
quasi-static plane strain bending and stretching, which allows 
detailed parameter sensitivity analysis in these processes. In 
this model, it is assumed that the inner radius of  a bending part 
is known. This can be changed to assume that the original mid- 
dle surface radius is known. This model can be used in finite 
element analysis to calculate strain and stress where the curva- 
tare is not defined by tool geometry, thus giving more accurate 
results. However, the formulation of  doing so would be very 
complicated. 

Table I Spr ingback  results from different methods 

Methed I 

Blankholder force, 2.45 KN 
0v degrees 114.3 
02, degrees 76.0 
01 - 02, degrees 38.3 
p, mm 88.5 

Blankholder force, 12.0 KN 
01, de~e8 111.8 
02, degrees 77.9 
02 - 02, degrees 33.9 
p, mm 100.2 

Blankhoider force, 19.6 KN 
01.degrees 108.0 
e~degrees 80.6 
0 t - 02, degrees 27.4 
p, mm 123.8 

NUMISHEET NUMISHEET 
Method 2 Method 3. '93 experimental '93 simulation 

114.5 114.5 101.5 - 116.0 62 - 134 
75.8 75.6 68.0 - 77.5 63 - 91 
38.7 38.9 
87.7 87.3 75.7 - 217.0 60 - 531 

113.4 1 1 4 . 5  . . . . . .  
76.3 7 5 . 6  . . . . . .  
37.1 3 8 . 9  . . . . . .  
91.4 8 7 . 3  . . . . . .  

110.6 114.5 99.0- 115.0 72- 127 
77.9 75.6 69.9 - 84.0 68 - 93 
32.7 38.9 

103.7 87.2 81.0 - 287.2 82 - 27000 
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Fig. 6 Other results predicted by different methods: (a) bend- 
ing moment distributions, (b) springback curvature, and (c) 
shape comparison before and after unloading 

A compressive force is required to reach pure bending de- 
fined as the original middle surface strain being zero. On the 
other hand, if pure bending is defined as the stress resultant of  
the cross section being zero, the original middle surface will 
have a positive strain, or stretching strain. 

A detailed analysis of the two-dimensional draw bending 
processes is provided. Analysis results from three different 
methods, as well as the results from the NUMISHEET '93 Con- 
ference, are presented for the two-dimensional draw bending 
problems. Method 1, using the new model and without consid- 
ering bending and unbending, gives the best springback predic- 
tion among the discussed methods. 

The process analysis and the results help to explain why the 
flat part under the punch becomes curved, why failure often oc- 
curs at the punch comer or at the die corner, why the membrane 
strain in the wall is so large and the curvature varies, and why 
the results from different analyses vary significantly. 
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